Select Page
At last – a simple solution for MPX signal transport over IP!

At last – a simple solution for MPX signal transport over IP!

At last – a simple solution for MPX signal transport over IP!

Distribution – Infrastructure – Multiplex – Transmitter

D

igigram has developed a solution to transport composite MPX signals from the studio over an IP network with the same quality and reliability as a point-to-point link.

MPX (multiplex) is the composite signal dedicated to the transmitter site. It is the only signal accepted by the transmitter (exciter) for FM diffusion, and it is traditionally delivered via a point-to-point link.

What are the main differences for an MPX signal delivery, between an IP wireless point-to point-link, and an IP network link?

There are two distinct advantages of an MPX-over-IP transport solution for broadcasters:

The first is a significant gain in flexibility and scalability; and the second is a reduction in equipment to be maintained and deployed on the transmitter sites. However, to ensure the same levels of quality and reliability over an IP network as for a point-to-point link, attention needs to be paid to IP transport and jitter mastering.

IP mastering

Built on the universally acclaimed IQOYA audio-over-IP platform, Digigram has developed a highly reliable solution allowing broadcasters to deliver MPX signals over IP networks.   All the mechanisms that have helped to make IQOYA a worldwide success for rock-solid audio-over-IP streaming have been deployed for MPX transport over IP. That includes FEC, dual streaming with time diversity, network jitter mastering, and smart synchronisation on the incoming stream. Plus, additional smart features have been added, such as decoder synchronisation for MFN, and auxiliary data tunnelling.

Jitter mastering

Why is it important to master the jitter? Mastering the jitter guarantees the same reliability as a point-to-point link. That means that transporting MPX signal can be achieved either via point-to-point or over an IP network depending on the broadcaster’s requirements.

Data rate mastering

MPX is a composite signal, hence smart codec design requires far less dynamic range than baseband audio. For instance for Audio stereo + RDS, 144 kHz sample rate @12 bits encoding with analog transmission leads to a very acceptable 2 Mb/s instead of the usual 3.3 Mb/s or more. With AES192 digital MPX transport 2.6 Mb/s can in addition transport an auxiliary subcarrier.

Conclusion:

The IQOYA hardware codec is a highly versatile codec for program delivery. It delivers analog or digital baseband audio or MPX through point-to-point or IP networks links. These baseband audio links are distributed to FM transmitter sites, web radio CDN, and/or DVB multiplexers for satellite, and DAB encoders for digital radio.

Digigram is proud to be one of the few in the world able to transport MPX over IP network with a very high jitter resilience and acceptable bandwidth.

Don’t miss any articles, Subscribe to our Newsletter!

Related posts:

Three Tips for Setting Up and Managing a Standard and AES67 Network

Three Tips for Setting Up and Managing a Standard and AES67 Network Contribution - Infrastructure - Studio A lthough large radio stations and groups typically have the resources to develop dedicated networks for AES67 (IP audio) and for corporate traffic, small and...

IP Brings Flexibility to Outside broadcasting

IP Brings Flexibility to Outside broadcasting the next challenge for IP-based technology is to operate with the ease of use of consumer devices What are the main advantages to using IP technology for mobile contributions? Reliability and security are the most...

At last – a simple solution for MPX signal transport over IP!

At last – a simple solution for MPX signal transport over IP! Distribution - Infrastructure - Multiplex - Transmitter D igigram has developed a solution to transport composite MPX signals from the studio over an IP network with the same quality and reliability as a...

AES67 for TV applications

AES67 for TV applications audio essence will no longer “follow” video; it will be produced independently and dynamically assembled with metadata in the delivery of the final content, leading to new productivity schemes B y its nature, the delivery of audio over IP...

Radio Broadcasting technology: state of the art and best practices

Radio Broadcasting technology: state of the art and best practices careful engineering must identify the different failure scenarios What is the most important development happening in AoIP right now for radio broadcasters? In Outside Broadcasting, SSL and STL...

From audio streaming to AES70 device discovery and control

From audio streaming to AES70 device discovery and control AES67 - Q&A 1) Is the role of AES67 as a sort-of bridging technology that will allow vertically integrated Audio over IP protocols, such as RAVENNA, Livewire+, WheatNet. to transport audio packets to equipment...

An SIP infrastructure for Audio-over-IP Contribution? What for?

Unlike conventional end-to-end Audio over IP contribution using proprietary protocols, a SIP infrastructure works as a transparent codec umbrella. It provides: Strong security of all audio streams to protect the broadcaster’s IT infrastructure Simple call management...

Five benefits of using a SaaS application for radio outside broadcasting

Five benefits of using a SaaS application for radio outside broadcasting Contribution - Infrastructure - Application The high expectations of today’s audiences are driving up content quality. Listener interests, rather than technical constraints, now dictate the...

Don't miss any articles, Subscribe to our Newsletter!